Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference Advisor: Jia-Ling, Koh Speaker: Hsiao-Ting Huang Source: ACL'2021 Date: 2023/01/10 ### Outline - Introduction - Method - Experiment - Conclusion ### Introduction: Text Classification ### • task:判斷po文者有無精神疾病 | | text | label | | | | |-------------------|---------------------------------------|----------|--|--|--| | labeled
data | 前幾天看身心科, 醫生 說我有憂鬱症, 要開始吃藥控制了 | | | | | | | 我牙齒痛了好幾天,可能是蛀牙了 | negative | | | | | | 但我可以確定我是邊緣性人格 我已經自殺過兩次了 | | | | | | | 最近才曉得交往不久的女朋友有憂鬱症。 發掘的過程就不詳述了 | negative | | | | | | · · · · · · · · · · · · · · · · · · · | • | | | | | unlabeled
data | 我是鬱症躁症混合 當鬱期一到,我就隨時隨地想自殘 在手腕上不停地的畫 | ? | | | | ### Introduction #### Problem: - the cost of annotating data. - it is common in real-world uses of NLP to have only a <u>small number of</u> <u>labeled examples</u>. - applying standard supervised learning to small training sets often performs poorly. #### Goal: - With the rise of pretrained language models, - providing task descriptions could successfully be combined with standard supervised learning in few-shot settings ### Introduction : Cloze Questions • append descriptions in natural language to an input input: text: 前幾天看身心科, 醫生說我有憂鬱症, 要開始吃藥控制了... output: label:positive ### Introduction : Cloze Questions • append descriptions in natural language to an input ### Outline - Introduction - Method - Experiment - Conclusion #### masked language model: $$s_{\mathbf{p}}(l \mid \mathbf{x}) = M(v(l) \mid P(\mathbf{x}))$$ $$q_{\mathbf{p}}(l \mid \mathbf{x}) = \frac{e^{s_{\mathbf{p}}(l \mid \mathbf{x})}}{\sum_{l' \in \mathcal{L}} e^{s_{\mathbf{p}}(l' \mid \mathbf{x})}}$$ $P(\mathbf{x})$ [CLS]前幾天看身心科, 醫生 說我有憂鬱症, 要開始吃藥控制了 ..., 我精神上應該[MASK]問題 #### LOSS: $$L = (1 - \alpha) \cdot L_{CE} + \alpha \cdot L_{MLM}$$ $$\alpha = 10^{-4}$$ masked language model #### ensemble: $$s_{\mathcal{M}}(l \mid \mathbf{x}) = \frac{1}{Z} \sum_{\mathbf{p} \in \mathcal{P}} w(\mathbf{p}) \cdot s_{\mathbf{p}}(l \mid \mathbf{x})$$ 1. $$w(p)=1$$ $$q_{\mathbf{p}}(l \mid \mathbf{x}) = \frac{e^{s_{\mathbf{p}}(l|\mathbf{x})}}{\sum_{l' \in \mathcal{L}} e^{s_{\mathbf{p}}(l'|\mathbf{x})}}$$ # iPET(iterative Pattern-Exploiting Training) The core idea of iPET is to <u>train several generations</u> of models on datasets of <u>increasing size</u>. # iPET(iterative Pattern-Exploiting Training) ### Outline - Introduction - Method - Experiment - Conclusion ### Datasets-Yelp task: estimate the rating that a customer gave to a restaurant on a 1to 5-star scale based on their review's text #### • pattern: $$P_1(a)=$$ It was ____. a $P_2(a)=$ Just ___.! $\parallel a$ $P_3(a)=$ a . All in all, it was ____. $P_4(a)=$ $a\parallel$ In summary, the restaurant is ____. #### verbalizer: $$v(1) = \text{terrible}$$ $v(2) = \text{bad}$ $v(3) = \text{okay}$ $v(4) = \text{good}$ $v(5) = \text{great}$ ### Datasets-AG's News task: a headline a and text body b, news have to be classified as belonging to one of the categories. #### • pattern: #### verbalizer: # agnews | | | headline | textbody | | | | |---|----------|--|--|--|--|--| | 5 | Business | Wall St. Bears Claw
Back Into the Black
(Reuters) | Reuters - Short-sellers, Wall Street's dwindling\band of ultra-cynics, are seeing green again.(股票) | | | | | | Business | Carlyle Looks Toward
Commercial Aerospace
(Reuters) | Reuters - Private investment firm Carlyle Group,\which has a reputation for making well-timed and occasionally\controversial plays in the defense industry, has quietly placed\its bets on another part of the market.(投資) | | | | | | Sports | USC starts at the top | Southern California greeted news of its first preseason No. 1 ranking since 1979 with ambivalence.(南加州季前賽排名第一) | | | | | | World | Seven Georgian
soldiers wounded as
South Ossetia ceasefire
violated (AFP) | AFP - Sporadic gunfire and shelling took place overnight in the disputed Georgian region of South Ossetia in violation of a fragile ceasefire, wounding seven Georgian servicemen.(法新社-南奧塞梯地區一夜之間發生零星的槍擊和砲擊) | | | | ### Datasets-Yahoo task: Yahoo Questions is a text classification dataset. Given a question a and an answer b, one of ten possible categories has to be assigned #### • pattern:a:問題, b:答案 #### verbalizer: $$v(1) = Society$$ $$v(2) = Science$$ $$v(3) = Health$$ $$v(5) = Computer$$ • • • 18 | Line | Examples | Method | Yelp | AG's | Yahoo | MNLI (m/mm) | |-------------|------------------------|--|---|---|--|---| | 1
2
3 | $ \mathcal{T} =0$ | unsupervised (avg)
unsupervised (max)
iPET | 33.8 ± 9.6 40.8 ± 0.0 56.7 ± 0.2 | 69.5 ± 7.2
79.4 ± 0.0
87.5 ± 0.1 | 44.0 ± 9.1
56.4 ± 0.0
70.7 ± 0.1 | $39.1 \pm 4.3 / 39.8 \pm 5.1$
$43.8 \pm 0.0 / 45.0 \pm 0.0$
$53.6 \pm 0.1 / 54.2 \pm 0.1$ | | 4 | $ \mathcal{T} = 10$ | supervised | 21.1 ± 1.6 | 25.0 ± 0.1 | 10.1 ± 0.1 | $34.2 \pm 2.1 / 34.1 \pm 2.0$ | | 5 | | PET | 52.9 ± 0.1 | 87.5 ± 0.0 | 63.8 ± 0.2 | $41.8 \pm 0.1 / 41.5 \pm 0.2$ | | 6 | | iPET | 57.6 ± 0.0 | 89.3 ± 0.1 | 70.7 ± 0.1 | $43.2 \pm 0.0 / 45.7 \pm 0.1$ | | 7 | $ \mathcal{T} = 50$ | supervised | 44.8 ± 2.7 | 82.1 ± 2.5 | 52.5 ± 3.1 | $45.6 \pm 1.8 / 47.6 \pm 2.4$ | | 8 | | PET | 60.0 ± 0.1 | 86.3 ± 0.0 | 66.2 ± 0.1 | $63.9 \pm 0.0 / 64.2 \pm 0.0$ | | 9 | | iPET | 60.7 ± 0.1 | 88.4 ± 0.1 | 69.7 ± 0.0 | $67.4 \pm 0.3 / 68.3 \pm 0.3$ | | 10 | $ \mathcal{T} = 100$ | supervised | 53.0 ± 3.1 | 86.0 ± 0.7 | 62.9 ± 0.9 | $47.9 \pm 2.8 / 51.2 \pm 2.6$ | | 11 | | PET | 61.9 ± 0.0 | 88.3 ± 0.1 | 69.2 ± 0.0 | $74.7 \pm 0.3 / 75.9 \pm 0.4$ | | 12 | | iPET | 62.9 ± 0.0 | 89.6 ± 0.1 | 71.2 ± 0.1 | $78.4 \pm 0.7 / 78.6 \pm 0.5$ | | 13
14 | $ \mathcal{T} = 1000$ | supervised
PET | 63.0 ±0.5
64.8 ±0.1 | 86.9 ±0.4
86.9 ±0.2 | 70.5 \pm 0.3 72.7 \pm 0.0 | 73.1 ± 0.2 / 74.8 ± 0.3
85.3 ± 0.2 / 85.5 ± 0.4 | zeroshot | Line | Examples | Method | Yelp | AG's | Yahoo | MNLI (m/mm) | |------|----------------------|--------------------|-----------------------|-----------------------|------------------|---| | 1 | | unsupervised (avg) | 33.8 ± 9.6 | 69.5 ± 7.2 | 44.0 ± 9.1 | 39.1 ±4.3 / 39.8 ±5.1 | | 2 | $ \mathcal{T} = 0$ | unsupervised (max) | 40.8 ± 0.0 | 79.4 ± 0.0 | 56.4 ± 0.0 | $43.8 \pm 0.0 / 45.0 \pm 0.0$ | | 3 | <i>5 5</i> | iРет | 56.7 ±0.2 | 87.5 ±0.1 | 70.7 ±0.1 | 53.6 ±0.1 / 54.2 ±0.1 | | 4 | | supervised | 21.1 ± 1.6 | 25.0 ± 0.1 | 10.1 ± 0.1 | 34.2 ±2.1 / 34.1 ±2.0 | | 5 | T = 10 | PET | 52.9 ± 0.1 | 87.5 ± 0.0 | 63.8 ± 0.2 | $41.8 \pm 0.1 / 41.5 \pm 0.2$ | | 6 | | 1PET | 57.6 ± 0.0 | 89.3 ±0.1 | 70.7 ±0.1 | 43.2 ± 0.0 / 45.7 ± 0.1 | | 7 | | supervised | 44.8 ± 2.7 | 82.1 ± 2.5 | 52.5 ± 3.1 | $45.6 \pm 1.8 / 47.6 \pm 2.4$ | | 8 | $ \mathcal{T} = 50$ | PET | 60.0 ± 0.1 | 86.3 ± 0.0 | 66.2 ± 0.1 | $63.9 \pm 0.0 / 64.2 \pm 0.0$ | | 9 | | iPET | 60.7 ± 0.1 | 88.4 ± 0.1 | 69.7 ±0.0 | 67.4 ± 0.3 / 68.3 ± 0.3 | | 10 | | supervised | 53.0 ± 3.1 | 86.0 ± 0.7 | 62.9 ± 0.9 | 47.9 ±2.8 / 51.2 ±2.6 | | 11 | T = 100 | РЕТ | 61.9 ± 0.0 | 88.3 ± 0.1 | 69.2 ± 0.0 | $74.7 \pm 0.3 / 75.9 \pm 0.4$ | | 12 | | iPET | 62.9 ±0.0 | 89.6 ±0.1 | 71.2 ±0.1 | 78.4 ± 0.7 / 78.6 ± 0.5 | | 13 | T = 1000 | supervised | 63.0 ± 0.5 | 86.9 ±0.4 | 70.5 ± 0.3 | $73.1 \pm 0.2 / 74.8 \pm 0.3$ | | 14 | 1/1 - 1000 | РЕТ | 64.8 ±0.1 | 86.9 ±0.2 | 72.7 ±0.0 | 85.3 ± 0.2 / 85.5 ± 0.4 | zeroshot few-shot | Line | Examples | Method | Yelp | AG's | Yahoo | MNLI (m/mm) | |-------------|------------------------|--|---|---|--|---| | 1
2
3 | $ \mathcal{T} = 0$ | unsupervised (avg)
unsupervised (max)
iPET | 33.8 ± 9.6 40.8 ± 0.0 56.7 ± 0.2 | 69.5 ± 7.2
79.4 ± 0.0
87.5 ± 0.1 | 44.0 ±9.1
56.4 ±0.0
70.7 ±0.1 | $39.1 \pm 4.3 / 39.8 \pm 5.1$
$43.8 \pm 0.0 / 45.0 \pm 0.0$
$53.6 \pm 0.1 / 54.2 \pm 0.1$ | | 4 | $ \mathcal{T} = 10$ | supervised | 21.1 ± 1.6 | 25.0 ± 0.1 | 10.1 ± 0.1 | $34.2 \pm 2.1 / 34.1 \pm 2.0$ | | 5 | | PET | 52.9 ± 0.1 | 87.5 ± 0.0 | 63.8 ± 0.2 | $41.8 \pm 0.1 / 41.5 \pm 0.2$ | | 6 | | iPET | 57.6 ± 0.0 | 89.3 ± 0.1 | 70.7 ± 0.1 | $43.2 \pm 0.0 / 45.7 \pm 0.1$ | | 7 | $ \mathcal{T} = 50$ | supervised | 44.8 ± 2.7 | 82.1 ± 2.5 | 52.5 ± 3.1 | $45.6 \pm 1.8 / 47.6 \pm 2.4$ | | 8 | | PET | 60.0 ± 0.1 | 86.3 ± 0.0 | 66.2 ± 0.1 | $63.9 \pm 0.0 / 64.2 \pm 0.0$ | | 9 | | iPET | 60.7 ± 0.1 | 88.4 ± 0.1 | 69.7 ± 0.0 | $67.4 \pm 0.3 / 68.3 \pm 0.3$ | | 10 | $ \mathcal{T} = 100$ | supervised | 53.0 ± 3.1 | 86.0 ± 0.7 | 62.9 ± 0.9 | $47.9 \pm 2.8 / 51.2 \pm 2.6$ | | 11 | | PET | 61.9 ± 0.0 | 88.3 ± 0.1 | 69.2 ± 0.0 | $74.7 \pm 0.3 / 75.9 \pm 0.4$ | | 12 | | iPET | 62.9 ± 0.0 | 89.6 ± 0.1 | 71.2 ± 0.1 | $78.4 \pm 0.7 / 78.6 \pm 0.5$ | | 13
14 | $ \mathcal{T} = 1000$ | supervised
PET | 63.0 ± 0.5
64.8 ± 0.1 | 86.9 ±0.4 86.9 ±0.2 | 70.5 \pm 0.3 72.7 \pm 0.0 | $73.1 \pm 0.2 / 74.8 \pm 0.3$
85.3 $\pm 0.2 / 85.5 \pm 0.4$ | | Method | Yelp | AG's | Yahoo | MNLI | |-----------------------|------|------|-------|------| | min | 39.6 | 82.1 | 50.2 | 36.4 | | max | 52.4 | 85.0 | 63.6 | 40.2 | | PET (no distillation) | 51.7 | 87.0 | 62.8 | 40.6 | | PET uniform | 52.7 | 87.3 | 63.8 | 42.0 | | PET weighted | 52.9 | 87.5 | 63.8 | 41.8 | Table 4: Minimum (min) and maximum (max) accuracy of models based on individual PVPs as well as PET with and without knowledge distillation ($|\mathcal{T}| = 10$). ### Conclusion - given a <u>small to medium number of labeled examples</u>, PET and iPET substantially outperform unsupervised approaches, supervised training and strong semi-supervised baselines. - With the rise of <u>pretrained language models</u> (PLMs) such as GPT, BERT and RoBERTa, the idea of <u>providing task descriptions</u> has become feasible for neural architectures