Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

Advisor: Jia-Ling, Koh

Speaker: Hsiao-Ting Huang

Source: ACL'2021

Date: 2023/01/10

Outline

- Introduction
- Method
- Experiment
- Conclusion

Introduction: Text Classification

• task:判斷po文者有無精神疾病

	text	label			
labeled data	前幾天看身心科, 醫生 說我有憂鬱症, 要開始吃藥控制了				
	我牙齒痛了好幾天,可能是蛀牙了	negative			
	但我可以確定我是邊緣性人格 我已經自殺過兩次了				
	最近才曉得交往不久的女朋友有憂鬱症。 發掘的過程就不詳述了	negative			
	· · · · · · · · · · · · · · · · · · ·	•			
unlabeled data	我是鬱症躁症混合 當鬱期一到,我就隨時隨地想自殘 在手腕上不停地的畫	?			

Introduction

Problem:

- the cost of annotating data.
- it is common in real-world uses of NLP to have only a <u>small number of</u> <u>labeled examples</u>.
- applying standard supervised learning to small training sets often performs poorly.

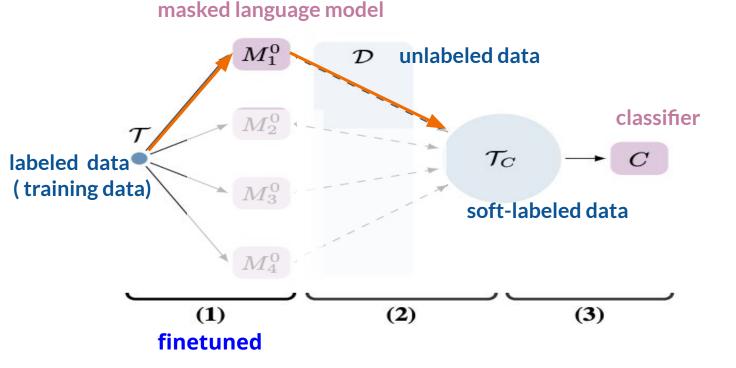
Goal:

- With the rise of pretrained language models,
- providing task descriptions could successfully be combined with standard supervised learning in few-shot settings

Introduction : Cloze Questions

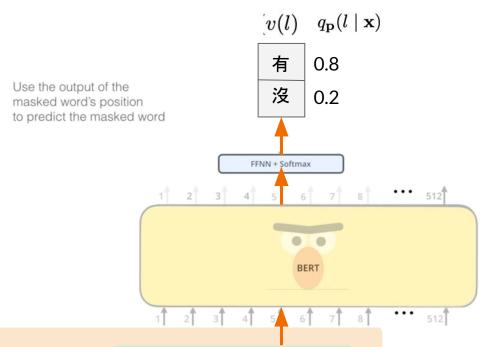
• append descriptions in natural language to an input

input: text: 前幾天看身心科, 醫生說我有憂鬱症, 要開始吃藥控制了...
output: label:positive


Introduction : Cloze Questions

• append descriptions in natural language to an input

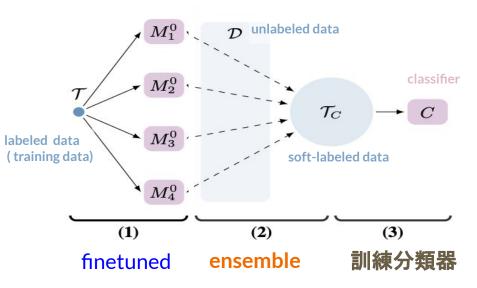
Outline


- Introduction
- Method
- Experiment
- Conclusion

masked language model:

$$s_{\mathbf{p}}(l \mid \mathbf{x}) = M(v(l) \mid P(\mathbf{x}))$$

$$q_{\mathbf{p}}(l \mid \mathbf{x}) = \frac{e^{s_{\mathbf{p}}(l \mid \mathbf{x})}}{\sum_{l' \in \mathcal{L}} e^{s_{\mathbf{p}}(l' \mid \mathbf{x})}}$$


 $P(\mathbf{x})$

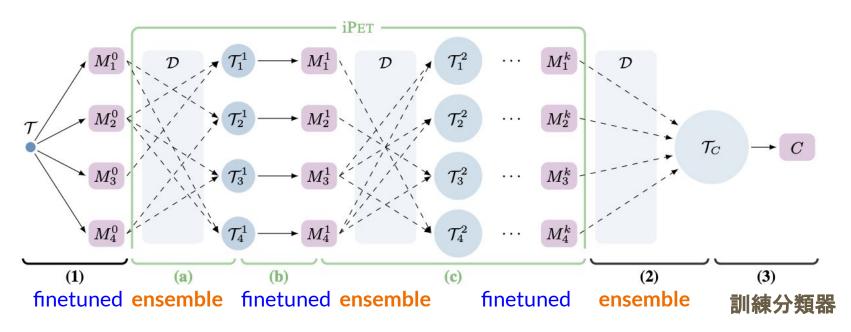
[CLS]前幾天看身心科, 醫生 說我有憂鬱症, 要開始吃藥控制了 ..., 我精神上應該[MASK]問題

LOSS:

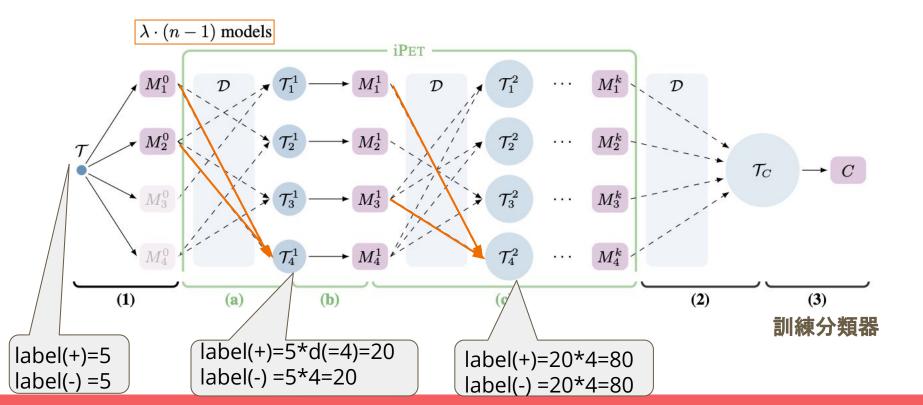
$$L = (1 - \alpha) \cdot L_{CE} + \alpha \cdot L_{MLM}$$
$$\alpha = 10^{-4}$$

masked language model

ensemble:


$$s_{\mathcal{M}}(l \mid \mathbf{x}) = \frac{1}{Z} \sum_{\mathbf{p} \in \mathcal{P}} w(\mathbf{p}) \cdot s_{\mathbf{p}}(l \mid \mathbf{x})$$

1.
$$w(p)=1$$


$$q_{\mathbf{p}}(l \mid \mathbf{x}) = \frac{e^{s_{\mathbf{p}}(l|\mathbf{x})}}{\sum_{l' \in \mathcal{L}} e^{s_{\mathbf{p}}(l'|\mathbf{x})}}$$

iPET(iterative Pattern-Exploiting Training)

The core idea of iPET is to <u>train several generations</u> of models on datasets of <u>increasing size</u>.

iPET(iterative Pattern-Exploiting Training)

Outline

- Introduction
- Method
- Experiment
- Conclusion

Datasets-Yelp

task: estimate the rating that a customer gave to a restaurant on a 1to 5-star scale based on their review's text

• pattern:

$$P_1(a)=$$
 It was ____. a $P_2(a)=$ Just ___.! $\parallel a$ $P_3(a)=$ a . All in all, it was ____. $P_4(a)=$ $a\parallel$ In summary, the restaurant is ____.

verbalizer:

$$v(1) = \text{terrible}$$
 $v(2) = \text{bad}$ $v(3) = \text{okay}$ $v(4) = \text{good}$ $v(5) = \text{great}$

Datasets-AG's News

task: a headline a and text body b, news have to be classified as belonging to one of the categories.

• pattern:

verbalizer:

agnews

		headline	textbody			
5	Business	Wall St. Bears Claw Back Into the Black (Reuters)	Reuters - Short-sellers, Wall Street's dwindling\band of ultra-cynics, are seeing green again.(股票)			
	Business	Carlyle Looks Toward Commercial Aerospace (Reuters)	Reuters - Private investment firm Carlyle Group,\which has a reputation for making well-timed and occasionally\controversial plays in the defense industry, has quietly placed\its bets on another part of the market.(投資)			
	Sports	USC starts at the top	Southern California greeted news of its first preseason No. 1 ranking since 1979 with ambivalence.(南加州季前賽排名第一)			
	World	Seven Georgian soldiers wounded as South Ossetia ceasefire violated (AFP)	AFP - Sporadic gunfire and shelling took place overnight in the disputed Georgian region of South Ossetia in violation of a fragile ceasefire, wounding seven Georgian servicemen.(法新社-南奧塞梯地區一夜之間發生零星的槍擊和砲擊)			

Datasets-Yahoo

task: Yahoo Questions is a text classification dataset. Given a question a and an answer b, one of ten possible categories has to be assigned

• pattern:a:問題, b:答案

verbalizer:

$$v(1) = Society$$

$$v(2) = Science$$

$$v(3) = Health$$

$$v(5) = Computer$$

•

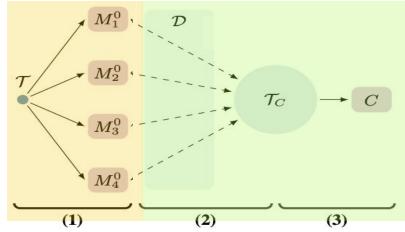
•

• 18

Line	Examples	Method	Yelp	AG's	Yahoo	MNLI (m/mm)
1 2 3	$ \mathcal{T} =0$	unsupervised (avg) unsupervised (max) iPET	33.8 ± 9.6 40.8 ± 0.0 56.7 ± 0.2	69.5 ± 7.2 79.4 ± 0.0 87.5 ± 0.1	44.0 ± 9.1 56.4 ± 0.0 70.7 ± 0.1	$39.1 \pm 4.3 / 39.8 \pm 5.1$ $43.8 \pm 0.0 / 45.0 \pm 0.0$ $53.6 \pm 0.1 / 54.2 \pm 0.1$
4	$ \mathcal{T} = 10$	supervised	21.1 ± 1.6	25.0 ± 0.1	10.1 ± 0.1	$34.2 \pm 2.1 / 34.1 \pm 2.0$
5		PET	52.9 ± 0.1	87.5 ± 0.0	63.8 ± 0.2	$41.8 \pm 0.1 / 41.5 \pm 0.2$
6		iPET	57.6 ± 0.0	89.3 ± 0.1	70.7 ± 0.1	$43.2 \pm 0.0 / 45.7 \pm 0.1$
7	$ \mathcal{T} = 50$	supervised	44.8 ± 2.7	82.1 ± 2.5	52.5 ± 3.1	$45.6 \pm 1.8 / 47.6 \pm 2.4$
8		PET	60.0 ± 0.1	86.3 ± 0.0	66.2 ± 0.1	$63.9 \pm 0.0 / 64.2 \pm 0.0$
9		iPET	60.7 ± 0.1	88.4 ± 0.1	69.7 ± 0.0	$67.4 \pm 0.3 / 68.3 \pm 0.3$
10	$ \mathcal{T} = 100$	supervised	53.0 ± 3.1	86.0 ± 0.7	62.9 ± 0.9	$47.9 \pm 2.8 / 51.2 \pm 2.6$
11		PET	61.9 ± 0.0	88.3 ± 0.1	69.2 ± 0.0	$74.7 \pm 0.3 / 75.9 \pm 0.4$
12		iPET	62.9 ± 0.0	89.6 ± 0.1	71.2 ± 0.1	$78.4 \pm 0.7 / 78.6 \pm 0.5$
13 14	$ \mathcal{T} = 1000$	supervised PET	63.0 ±0.5 64.8 ±0.1	86.9 ±0.4 86.9 ±0.2	70.5 \pm 0.3 72.7 \pm 0.0	73.1 ± 0.2 / 74.8 ± 0.3 85.3 ± 0.2 / 85.5 ± 0.4

zeroshot

Line	Examples	Method	Yelp	AG's	Yahoo	MNLI (m/mm)
1		unsupervised (avg)	33.8 ± 9.6	69.5 ± 7.2	44.0 ± 9.1	39.1 ±4.3 / 39.8 ±5.1
2	$ \mathcal{T} = 0$	unsupervised (max)	40.8 ± 0.0	79.4 ± 0.0	56.4 ± 0.0	$43.8 \pm 0.0 / 45.0 \pm 0.0$
3	<i>5 5</i>	iРет	56.7 ±0.2	87.5 ±0.1	70.7 ±0.1	53.6 ±0.1 / 54.2 ±0.1
4		supervised	21.1 ± 1.6	25.0 ± 0.1	10.1 ± 0.1	34.2 ±2.1 / 34.1 ±2.0
5	T = 10	PET	52.9 ± 0.1	87.5 ± 0.0	63.8 ± 0.2	$41.8 \pm 0.1 / 41.5 \pm 0.2$
6		1PET	57.6 ± 0.0	89.3 ±0.1	70.7 ±0.1	43.2 ± 0.0 / 45.7 ± 0.1
7		supervised	44.8 ± 2.7	82.1 ± 2.5	52.5 ± 3.1	$45.6 \pm 1.8 / 47.6 \pm 2.4$
8	$ \mathcal{T} = 50$	PET	60.0 ± 0.1	86.3 ± 0.0	66.2 ± 0.1	$63.9 \pm 0.0 / 64.2 \pm 0.0$
9		iPET	60.7 ± 0.1	88.4 ± 0.1	69.7 ±0.0	67.4 ± 0.3 / 68.3 ± 0.3
10		supervised	53.0 ± 3.1	86.0 ± 0.7	62.9 ± 0.9	47.9 ±2.8 / 51.2 ±2.6
11	T = 100	РЕТ	61.9 ± 0.0	88.3 ± 0.1	69.2 ± 0.0	$74.7 \pm 0.3 / 75.9 \pm 0.4$
12		iPET	62.9 ±0.0	89.6 ±0.1	71.2 ±0.1	78.4 ± 0.7 / 78.6 ± 0.5
13	T = 1000	supervised	63.0 ± 0.5	86.9 ±0.4	70.5 ± 0.3	$73.1 \pm 0.2 / 74.8 \pm 0.3$
14	1/1 - 1000	РЕТ	64.8 ±0.1	86.9 ±0.2	72.7 ±0.0	85.3 ± 0.2 / 85.5 ± 0.4


zeroshot

few-shot

Line	Examples	Method	Yelp	AG's	Yahoo	MNLI (m/mm)
1 2 3	$ \mathcal{T} = 0$	unsupervised (avg) unsupervised (max) iPET	33.8 ± 9.6 40.8 ± 0.0 56.7 ± 0.2	69.5 ± 7.2 79.4 ± 0.0 87.5 ± 0.1	44.0 ±9.1 56.4 ±0.0 70.7 ±0.1	$39.1 \pm 4.3 / 39.8 \pm 5.1$ $43.8 \pm 0.0 / 45.0 \pm 0.0$ $53.6 \pm 0.1 / 54.2 \pm 0.1$
4	$ \mathcal{T} = 10$	supervised	21.1 ± 1.6	25.0 ± 0.1	10.1 ± 0.1	$34.2 \pm 2.1 / 34.1 \pm 2.0$
5		PET	52.9 ± 0.1	87.5 ± 0.0	63.8 ± 0.2	$41.8 \pm 0.1 / 41.5 \pm 0.2$
6		iPET	57.6 ± 0.0	89.3 ± 0.1	70.7 ± 0.1	$43.2 \pm 0.0 / 45.7 \pm 0.1$
7	$ \mathcal{T} = 50$	supervised	44.8 ± 2.7	82.1 ± 2.5	52.5 ± 3.1	$45.6 \pm 1.8 / 47.6 \pm 2.4$
8		PET	60.0 ± 0.1	86.3 ± 0.0	66.2 ± 0.1	$63.9 \pm 0.0 / 64.2 \pm 0.0$
9		iPET	60.7 ± 0.1	88.4 ± 0.1	69.7 ± 0.0	$67.4 \pm 0.3 / 68.3 \pm 0.3$
10	$ \mathcal{T} = 100$	supervised	53.0 ± 3.1	86.0 ± 0.7	62.9 ± 0.9	$47.9 \pm 2.8 / 51.2 \pm 2.6$
11		PET	61.9 ± 0.0	88.3 ± 0.1	69.2 ± 0.0	$74.7 \pm 0.3 / 75.9 \pm 0.4$
12		iPET	62.9 ± 0.0	89.6 ± 0.1	71.2 ± 0.1	$78.4 \pm 0.7 / 78.6 \pm 0.5$
13 14	$ \mathcal{T} = 1000$	supervised PET	63.0 ± 0.5 64.8 ± 0.1	86.9 ±0.4 86.9 ±0.2	70.5 \pm 0.3 72.7 \pm 0.0	$73.1 \pm 0.2 / 74.8 \pm 0.3$ 85.3 $\pm 0.2 / 85.5 \pm 0.4$

Method	Yelp	AG's	Yahoo	MNLI
min	39.6	82.1	50.2	36.4
max	52.4	85.0	63.6	40.2
PET (no distillation)	51.7	87.0	62.8	40.6
PET uniform	52.7	87.3	63.8	42.0
PET weighted	52.9	87.5	63.8	41.8

Table 4: Minimum (min) and maximum (max) accuracy of models based on individual PVPs as well as PET with and without knowledge distillation ($|\mathcal{T}| = 10$).

Conclusion

- given a <u>small to medium number of labeled examples</u>, PET and iPET substantially outperform unsupervised approaches, supervised training and strong semi-supervised baselines.
- With the rise of <u>pretrained language models</u> (PLMs) such as GPT, BERT and RoBERTa, the idea of <u>providing task descriptions</u> has become feasible for neural architectures